Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Rev Chem ; 7(2): 67-68, 2023 02.
Article in English | MEDLINE | ID: covidwho-2268409
2.
PLoS One ; 18(3): e0282337, 2023.
Article in English | MEDLINE | ID: covidwho-2267593

ABSTRACT

INTRODUCTION: The study aimed to evaluate visualization-based training's effects on lung auscultation during clinical clerkship (CC) in the Department of Respiratory Medicine on student skills and confidence. METHODS: The study period was December 2020-November 2021. Overall, 65 students attended a lecture on lung auscultation featuring a simulator (Mr. Lung™). Among them, 35 (visualization group) received additional training wherein they were asked to mentally visualize lung sounds using a graphical visualized lung sounds diagram as an example. All students answered questions on their self-efficacy regarding lung auscultation before and after four weeks of CC. They also took a lung auscultation test with the simulator at the beginning of CC (pre-test) and on the last day of the third week (post-test) (maximum score: 25). We compared the answers in the questionnaire and the test scores between the visualization group and students who only attended the lecture (control group, n = 30). The Wilcoxon signed-rank test and analysis of covariance were used to compare the answers to the questionnaire about confidence in lung auscultation and the scores of the lung auscultation tests before and after the training. RESULTS: Confidence in auscultation of lung sounds significantly increased in both groups (five-point Likert scale, visualization group: pre-questionnaire median 1 [Interquartile range 1] to post-questionnaire 3 [1], p<0.001; control group: 2 [1] to 3 [1], p<0.001) and was significantly higher in the visualization than in the control group. Test scores increased in both groups (visualization group: pre-test 11 [2] to post-test 15 [4], p<0.001; control group: 11 [5] to 14 [4], p<0.001). However, there were no differences between both groups' pre and post-tests scores (p = 0.623). CONCLUSION: Visualizing lung sounds may increase medical students' confidence in their lung auscultation skills; this may reduce their resistance to lung auscultation and encourage the repeated auscultation necessary to further improve their long-term auscultation abilities.


Subject(s)
Clinical Clerkship , Students, Medical , Humans , Respiratory Sounds , Auscultation , Lung , Clinical Competence , Heart Auscultation
3.
Am J Cardiol ; 184: 147-148, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2084394

ABSTRACT

Cardiology has progressed beyond classic auscultation, but the doctor-patient relationship must be preserved.


Subject(s)
Cardiology , Stethoscopes , Humans , Physician-Patient Relations , Auscultation
4.
Biomed Eng Online ; 21(1): 63, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2009406

ABSTRACT

BACKGROUND: With the spread of COVID-19, telemedicine has played an important role, but tele-auscultation is still unavailable in most countries. This study introduces and tests a tele-auscultation system (Stemoscope) and compares the concordance of the Stemoscope with the traditional stethoscope in the evaluation of heart murmurs. METHODS: A total of 57 patients with murmurs were recruited, and echocardiographs were performed. Three cardiologists were asked to correctly categorize heart sounds (both systolic murmur and diastolic murmur) as normal vs. abnormal with both the Stemoscope and a traditional acoustic stethoscope under different conditions. Firstly, we compared the in-person auscultation agreement between Stemoscope and the conventional acoustic stethoscope. Secondly, we compared tele-auscultation (recorded heart sounds) agreement between Stemoscope and acoustic results. Thirdly, we compared both the Stemoscope tele-auscultation results and traditional acoustic stethoscope in-person auscultation results with echocardiography. Finally, ten other cardiologists were asked to complete a qualitative questionnaire to assess their experience using the Stemoscope. RESULTS: For murmurs detection, the in-person auscultation agreement between Stemoscope and the acoustic stethoscope was 91% (p = 0.67). The agreement between Stemoscope tele-auscultation and the acoustic stethoscope in-person auscultation was 90% (p = 0.32). When using the echocardiographic findings as the reference, the agreement between Stemoscope (tele-auscultation) and the acoustic stethoscope (in-person auscultation) was 89% vs. 86% (p = 1.00). The system evaluated by ten cardiologists is considered easy to use, and most of them would consider using it in a telemedical setting. CONCLUSION: In-person auscultation and tele-auscultation by the Stemoscope are in good agreement with manual acoustic auscultation. The Stemoscope is a helpful heart murmur screening tool at a distance and can be used in telemedicine.


Subject(s)
COVID-19 , Stethoscopes , Auscultation/methods , COVID-19/diagnosis , Electronics , Heart Auscultation/methods , Heart Murmurs , Humans
5.
Sci Rep ; 12(1): 5558, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1931449

ABSTRACT

The ongoing COVID-19 pandemic let to efforts to develop and deploy digital contact tracing systems to expedite contact tracing and risk notification. Unfortunately, the success of these systems has been limited, partly owing to poor interoperability with manual contact tracing, low adoption rates, and a societally sensitive trade-off between utility and privacy. In this work, we introduce a new privacy-preserving and inclusive system for epidemic risk assessment and notification that aims to address these limitations. Rather than capturing pairwise encounters between user devices as done by existing systems, our system captures encounters between user devices and beacons placed in strategic locations where infection clusters may originate. Epidemiological simulations using an agent-based model demonstrate that, by utilizing location and environmental information and interoperating with manual contact tracing, our system can increase the accuracy of contact tracing actions and may help reduce epidemic spread already at low adoption.


Subject(s)
COVID-19 , Pandemics , Auscultation , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Humans , Pandemics/prevention & control , Privacy
6.
Sensors (Basel) ; 22(9)2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1792557

ABSTRACT

The COVID-19 pandemic accelerated the assimilation of telemedicine platforms into medical practice. Nevertheless, research-based evidence in this field is still accumulating. This was a prospective, cross-sectional comparative assessment of a remote physical examination device used mainly for heart and lung digital auscultation. We analyzed usage patterns, user (physician) subjective appreciation and compared it to legacy measures. Eighteen physicians (median age 36 years (IQR 32-45): two interns, seven residents and nine senior physicians; eleven internists, five geriatricians and two pediatricians) executed over 250 remote physical examinations. Their median work duration with quarantined patients was 60 days (IQR 45-60). The median number of patients examined by a single physician was 17 (IQR 10-34). Regarding overall estimation, all participants tended to prefer the remote examination in the setting of quarantined patients (median 6, IQR 3.75-8), while no statistically significant difference was demonstrated compared to the indifference value (p = 0.122). Internists preferred tele-medical examination over non-internists, with significant differences between groups regarding heart auscultation, (median 7, (IQR 3-7) vs. median 2, (IQR 1-5, respectively)), p = 0.044. In the setting of quarantined patients, from the physicians' perspective, a digital platform for remote auscultation of heart and lungs was considered as an acceptable alternative to legacy measures.


Subject(s)
COVID-19 , Adult , Auscultation , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Lung , Pandemics
7.
Comput Biol Med ; 145: 105491, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773224

ABSTRACT

The paper proposes a graph-theoretical approach to auscultation, bringing out the potential of graph features in classifying the bioacoustics signals. The complex network analysis of the bioacoustics signals - vesicular (VE) and bronchial (BR) breath sound - of 48 healthy persons are carried out for understanding the airflow dynamics during respiration. The VE and BR are classified by the machine learning techniques extracting the graph features - the number of edges (E), graph density (D), transitivity (T), degree centrality (Dcg) and eigenvector centrality (Ecg). The higher value of E, D, and T in BR indicates the temporally correlated airflow through the wider tracheobronchial tract resulting in sustained high-intense low-frequencies. The frequency spread and high-frequencies in VE, arising due to the less correlated airflow through the narrow segmental bronchi and lobar, appears as a lower value for E, D, and T. The lower values of Dcg and Ecg justify the inferences from the spectral and other graph parameters. The study proposes a methodology in remote auscultation that can be employed in the current scenario of COVID-19.


Subject(s)
COVID-19 , Signal Processing, Computer-Assisted , Auscultation , Humans , Lung , Machine Learning
8.
Comput Methods Programs Biomed ; 213: 106500, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1556335

ABSTRACT

BACKGROUND AND OBJECTIVE: Research on automatic auscultation diagnosis of COVID-19 has not yet been developed. We therefore aimed to engineer a deep learning approach for the automated grading diagnosis of COVID-19 by pulmonary auscultation analysis. METHODS: 172 confirmed cases of COVID-19 in Tongji Hospital were divided into moderate, severe and critical group. Pulmonary auscultation were recorded in 6-10 sites per patient through 3M littmann stethoscope and the data were transferred to computer to construct the dataset. Convolutional neural network (CNN) were designed to generate classifications of the auscultation. F1 score, the area under the curve (AUC) of the receiver operating characteristic curve, sensitivity and specificity were quantified. Another 45 normal patients were served as control group. RESULTS: There are about 56.52%, 59.46% and 78.85% abnormal auscultation in the moderate, severe and critical groups respectively. The model showed promising performance with an averaged F1 scores (0.9938 95% CI 0.9923-0.9952), AUC ROC score (0.9999 95% CI 0.9998-1.0000), sensitivity (0.9938 95% CI 0.9910-0.9965) and specificity (0.9979 95% CI 0.9970-0.9988) in identifying the COVID-19 patients among normal, moderate, severe and critical group. It is capable in identifying crackles, wheezes, phlegm sounds with an averaged F1 scores (0.9475 95% CI 0.9440-0.9508), AUC ROC score (0.9762 95% CI 0.9848-0.9865), sensitivity (0.9482 95% CI 0.9393-0.9578) and specificity (0.9835 95% CI 0.9806-0.9863). CONCLUSIONS: Our model is accurate and efficient in automatically diagnosing COVID-19 according to different categories, laying a promising foundation for AI-enabled auscultation diagnosing systems for lung diseases in clinical applications.


Subject(s)
COVID-19 , Algorithms , Artificial Intelligence , Auscultation , Cohort Studies , Humans , ROC Curve , SARS-CoV-2
9.
JMIR Mhealth Uhealth ; 9(7): e23109, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328041

ABSTRACT

BACKGROUND: The urgent need for telemedicine has become clear in the COVID-19 pandemic. To facilitate telemedicine, the development and improvement of remote examination systems are required. A system combining an electronic stethoscope and Bluetooth connectivity is a promising option for remote auscultation in clinics and hospitals. However, the utility of such systems remains unknown. OBJECTIVE: This study was conducted to assess the utility of real-time auscultation using a Bluetooth-connected electronic stethoscope compared to that of classical auscultation, using lung and cardiology patient simulators. METHODS: This was an open-label, randomized controlled trial including senior residents and faculty in the department of general internal medicine of a university hospital. The only exclusion criterion was a refusal to participate. This study consisted of 2 parts: lung auscultation and cardiac auscultation. Each part contained a tutorial session and a test session. All participants attended a tutorial session, in which they listened to 15 sounds on the simulator using a classic stethoscope and were told the correct classification. Thereafter, participants were randomly assigned to either the real-time remote auscultation group (intervention group) or the classical auscultation group (control group) for test sessions. In the test sessions, participants had to classify a series of 10 lung sounds and 10 cardiac sounds, depending on the study part. The intervention group listened to the sounds remotely using the electronic stethoscope, a Bluetooth transmitter, and a wireless, noise-canceling, stereo headset. The control group listened to the sounds directly using a traditional stethoscope. The primary outcome was the test score, and the secondary outcomes were the rates of correct answers for each sound. RESULTS: In total, 20 participants were included. There were no differences in age, sex, and years from graduation between the 2 groups in each part. The overall test score of lung auscultation in the intervention group (80/110, 72.7%) was not different from that in the control group (71/90, 78.9%; P=.32). The only lung sound for which the correct answer rate differed between groups was that of pleural friction rubs (P=.03); it was lower in the intervention group (3/11, 27%) than in the control group (7/9, 78%). The overall test score for cardiac auscultation in the intervention group (50/60, 83.3%) was not different from that in the control group (119/140, 85.0%; P=.77). There was no cardiac sound for which the correct answer rate differed between groups. CONCLUSIONS: The utility of a real-time remote auscultation system using a Bluetooth-connected electronic stethoscope was comparable to that of direct auscultation using a classic stethoscope, except for classification of pleural friction rubs. This means that most of the real world's essential cardiopulmonary sounds could be classified by a real-time remote auscultation system using a Bluetooth-connected electronic stethoscope. TRIAL REGISTRATION: UMIN-CTR UMIN000040828; https://tinyurl.com/r24j2p6s and UMIN-CTR UMIN000041601; https://tinyurl.com/bsax3j5f.


Subject(s)
COVID-19 , Pandemics , Auscultation , Electronics , Humans , Pilot Projects , SARS-CoV-2
10.
Hosp Pract (1995) ; 49(4): 240-244, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1284837

ABSTRACT

Rene Laennec came up with the idea of a stethoscope in 1816 to avoid the embarrassment of performing immediate auscultation on women. Soon many doctors around the world started using this tool because of its increased accuracy and ease of use. Stethoscopes hold great significance in the medical community. However, is the importance placed on stethoscopes justified today? We now have devices like portable ultrasound machines that make it much easier to visualize the body. These devices offset their higher initial cost by reducing downstream costs due to their greater accuracy and their capability of detecting diseases at an earlier stage. Also, because of the COVID-19 pandemic, new ways are being investigated to reduce the transmission of diseases. Stethoscopes being a possible vector for infectious agents coupled with the advent of newer devices that can visualize the body with greater accuracy put into question the continued use of stethoscopes today. With that said, the use of stethoscopes to diagnose diseases is still crucial in places where buying these new devices is not yet possible. The stethoscope is a great symbol of medicine, but its use needs to be in line with what is best for the patient.


Subject(s)
COVID-19/epidemiology , Stethoscopes/microbiology , Auscultation/methods , COVID-19/transmission , History, 19th Century , Humans , Pandemics , SARS-CoV-2 , Stethoscopes/history
11.
J Biol Phys ; 47(2): 103-115, 2021 06.
Article in English | MEDLINE | ID: covidwho-1202797

ABSTRACT

The paper delves into the plausibility of applying fractal, spectral, and nonlinear time series analyses for lung auscultation. The thirty-five sound signals of bronchial (BB) and pulmonary crackle (PC) analysed by fast Fourier transform and wavelet not only give the details of number, nature, and time of occurrence of the frequency components but also throw light onto the embedded air flow during breathing. Fractal dimension, phase portrait, and sample entropy help in divulging the greater randomness, antipersistent nature, and complexity of airflow dynamics in BB than PC. The potential of principal component analysis through the spectral feature extraction categorises BB, fine crackles, and coarse crackles. The phase portrait feature-based supervised classification proves to be better compared to the unsupervised machine learning technique. The present work elucidates phase portrait features as a better choice of classification, as it takes into consideration the temporal correlation between the data points of the time series signal, and thereby suggesting a novel surrogate method for the diagnosis in pulmonology. The study suggests the possible application of the techniques in the auscultation of coronavirus disease 2019 seriously affecting the respiratory system.


Subject(s)
Auscultation , Machine Learning , Respiratory Sounds/diagnosis , Signal Processing, Computer-Assisted , COVID-19/physiopathology , Fourier Analysis , Humans , Principal Component Analysis
12.
BMC Pulm Med ; 21(1): 103, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1150397

ABSTRACT

BACKGROUND: Lung auscultation is fundamental to the clinical diagnosis of respiratory disease. However, auscultation is a subjective practice and interpretations vary widely between users. The digitization of auscultation acquisition and interpretation is a particularly promising strategy for diagnosing and monitoring infectious diseases such as Coronavirus-19 disease (COVID-19) where automated analyses could help decentralise care and better inform decision-making in telemedicine. This protocol describes the standardised collection of lung auscultations in COVID-19 triage sites and a deep learning approach to diagnostic and prognostic modelling for future incorporation into an intelligent autonomous stethoscope benchmarked against human expert interpretation. METHODS: A total of 1000 consecutive, patients aged ≥ 16 years and meeting COVID-19 testing criteria will be recruited at screening sites and amongst inpatients of the internal medicine department at the Geneva University Hospitals, starting from October 2020. COVID-19 is diagnosed by RT-PCR on a nasopharyngeal swab and COVID-positive patients are followed up until outcome (i.e., discharge, hospitalisation, intubation and/or death). At inclusion, demographic and clinical data are collected, such as age, sex, medical history, and signs and symptoms of the current episode. Additionally, lung auscultation will be recorded with a digital stethoscope at 6 thoracic sites in each patient. A deep learning algorithm (DeepBreath) using a Convolutional Neural Network (CNN) and Support Vector Machine classifier will be trained on these audio recordings to derive an automated prediction of diagnostic (COVID positive vs negative) and risk stratification categories (mild to severe). The performance of this model will be compared to a human prediction baseline on a random subset of lung sounds, where blinded physicians are asked to classify the audios into the same categories. DISCUSSION: This approach has broad potential to standardise the evaluation of lung auscultation in COVID-19 at various levels of healthcare, especially in the context of decentralised triage and monitoring. TRIAL REGISTRATION: PB_2016-00500, SwissEthics. Registered on 6 April 2020.


Subject(s)
Auscultation/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Deep Learning , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Case-Control Studies , Clinical Decision Rules , Clinical Protocols , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Risk Assessment , Triage , Young Adult
13.
Int J Med Sci ; 18(6): 1415-1422, 2021.
Article in English | MEDLINE | ID: covidwho-1110663

ABSTRACT

Objective: SARS-CoV-2 (originally named COVID-2019) pneumonia is currently prevalent worldwide. The number of cases has increased rapidly but the auscultatory characteristics of affected patients and how to use it to predict who is most likely to survive or die are not available. This study aims to describe the auscultatory characteristics and its clinical relativity of SARS-CoV-2 pneumonia by using a wireless stethoscope. Material and methods: A cross-sectional, observational, single-center case series of 30 consecutive hospitalized patients with confirmed SARS-CoV-2 pneumonia at Leishenshan Hospital in Wuhan, China, were enrolled from March 9 to April 5, 2020. Clinical, laboratory, radiological, treatment data and lung auscultation were collected and analyzed. Lung auscultation was acquired by a wireless electronic stethoscope. Auscultatory characteristics of the moderate, severe, and critically ill patients were compared. Results: Kinds of crackles including fine crackles and wheezing were heard and recorded in these patients. Velcro crackles were heard in most critically ill patients (6/10). Besides, patients with Velcro crackles were all dead (6/6). There was no positive lung auscultatory finding in the moderate group and little positive lung auscultatory findings (4/10) in the severe group. Conclusion: Velcro crackles can be auscultated by this newly designed electronic wireless stethoscope in most critically ill patients infected by SARS-CoV-2 and predicts a poor prognosis. Moderate and severe patients without positive auscultatory findings may have a better prognosis.


Subject(s)
Auscultation/methods , Lung/diagnostic imaging , Pneumonia/diagnostic imaging , Pneumonia/virology , Wireless Technology , Aged , Case-Control Studies , China , Critical Illness , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2/pathogenicity , Stethoscopes
14.
J Acoust Soc Am ; 149(1): 66, 2021 01.
Article in English | MEDLINE | ID: covidwho-1035286

ABSTRACT

During the COVID-19 outbreak, the auscultation of heart and lung sounds has played an important role in the comprehensive diagnosis and real-time monitoring of confirmed cases. With clinicians wearing protective clothing in isolation wards, a potato chip tube stethoscope, which is a secure and flexible substitute for a conventional stethoscope, has been used by Chinese medical workers in the first-line treatment of COVID-19. In this study, an optimal design for this simple cylindrical stethoscope is proposed based on the fundamental theory of acoustic waveguides. Analyses of the cutoff frequency, sound power transmission coefficient, and sound wave propagation in the uniform lossless tube provide theoretical guidance for selecting the geometric parameters for this simple cylindrical stethoscope. A basic investigation into the auscultatory performances of the original tube and the optimal tube with proposed dimensions was conducted both in a semi-anechoic chamber and in a quiet laboratory. Both experimental results and front-line doctors' clinical feedback endorse the proposed theoretical optimization.


Subject(s)
Acoustics , Auscultation/standards , COVID-19/diagnosis , Equipment Design/standards , Stethoscopes/standards , Acoustics/instrumentation , Auscultation/instrumentation , Auscultation/methods , COVID-19/epidemiology , COVID-19/physiopathology , Equipment Design/instrumentation , Equipment Design/methods , Humans , Respiratory Sounds/physiology , Respiratory Sounds/physiopathology
15.
GMS J Med Educ ; 37(7): Doc102, 2020.
Article in English | MEDLINE | ID: covidwho-970665

ABSTRACT

Introduction: Auscultation skills are among the basic techniques to be learned in medical school. Such skills are achieved through supervised examination of patients often supported by simulator-based learning. The emergence of COVID-19 has disrupted and continues to hinder hands-on on-site medical training on a global scale. Project description: An effective virtual auscultation course was established in times of contact restrictions due to COVID-19 at the Medical Faculty of the Heinrich Heine University Düsseldorf. The interactive case-based webinar was designed to improve listening techniques, description and interpretation of auscultation findings in an off-site context. Clinical cases with pre-recorded auscultation sounds and additional case-based diagnostics were presented. The course focused on common heart murmurs including aortic and mitral valve stenosis and regurgitation as well as congenital heart defects (ventricular septal defect and patent ductus arteriosus). Results: The course was well received by the students and assessed as being useful and instructive. Assessment of learning effects, such as detection of pathological findings before and after training, is ongoing as part of a subsequent trial. Conclusion: Virtual interactive learning using a sound simulation lesson with clinical case presentations via video chat can well be used as a supplement to practical auscultation training. This learning format could also play a useful role in the curriculum of medical studies once contact restrictions are revoked.


Subject(s)
Auscultation/methods , COVID-19/epidemiology , Education, Distance/organization & administration , Education, Medical/organization & administration , Videoconferencing/organization & administration , Humans , Pandemics , SARS-CoV-2 , Students, Medical/psychology
16.
Antimicrob Resist Infect Control ; 9(1): 196, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-969232

ABSTRACT

The emerging COVID-19 pandemic poses many difficulties to medical professionals. One of them is the need to use personal protective equipment (PPE) in order to protect themselves and their families, while not compromising their care. Physical examination is one of the cornerstones of medical assessment but parts of it are nearly impossible to do while wearing protective equipment. In this brief report we demonstrate a novel wireless stethoscope and its use for treating suspected and proven COVID-19 patients, as a representative to other infectious diseases.


Subject(s)
Auscultation , COVID-19/prevention & control , Personal Protective Equipment , SARS-CoV-2 , Humans , Stethoscopes
18.
Respiration ; 99(9): 755-763, 2020.
Article in English | MEDLINE | ID: covidwho-910309

ABSTRACT

BACKGROUND: Effective auscultations are often hard to implement in isolation wards. To date, little is known about the characteristics of pulmonary auscultation in novel coronavirus (COVID-19) pneumonia. OBJECTIVES: The aim of this study was to explore the features and clinical significance of pulmonary auscultation in COVID-19 pneumonia using an electronic stethoscope in isolation wards. METHODS: This cross-sectional, observational study was conducted among patients with laboratory-confirmed COVID-19 at Wuhan Red-Cross Hospital during the period from January 27, 2020, to February 12, 2020. Standard auscultation with an electronic stethoscope was performed and electronic recordings of breath sounds were analyzed. RESULTS: Fifty-seven patients with average age of 60.6 years were enrolled. The most common symptoms were cough (73.7%) during auscultation. Most cases had bilateral lesions (96.4%) such as multiple ground-glass opacities (69.1%) and fibrous stripes (21.8%). High-quality auscultation recordings (98.8%) were obtained, and coarse breath sounds, wheezes, coarse crackles, fine crackles, and Velcro crackles were identified. Most cases had normal breath sounds in upper lungs, but the proportions of abnormal breath sounds increased in the basal fields where Velcro crackles were more commonly identified at the posterior chest. The presence of fine and coarse crackles detected 33/39 patients with ground-glass opacities (sensitivity 84.6% and specificity 12.5%) and 8/9 patients with consolidation (sensitivity 88.9% and specificity 15.2%), while the presence of Velcro crackles identified 16/39 patients with ground-glass opacities (sensitivity 41% and specificity 81.3%). CONCLUSIONS: The abnormal breath sounds in COVID-19 pneumonia had some consistent distributive characteristics and to some extent correlated with the radiologic features. Such evidence suggests that electronic auscultation is useful to aid diagnosis and timely management of the disease. Further studies are indicated to validate the accuracy and potential clinical benefit of auscultation in detecting pulmonary abnormalities in COVID-19 infection.


Subject(s)
Auscultation , COVID-19/physiopathology , Lung/physiopathology , Respiratory Sounds/physiopathology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19/therapy , China , Cough/physiopathology , Cross-Sectional Studies , Electrical Equipment and Supplies , Female , Glucocorticoids/therapeutic use , Humans , Lung/diagnostic imaging , Male , Middle Aged , Oxygen Inhalation Therapy , Respiration, Artificial , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index , Smartphone , Sound Spectrography , Sputum , Stethoscopes , Tomography, X-Ray Computed , Young Adult , COVID-19 Drug Treatment
19.
Intern Med ; 59(24): 3213-3216, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-902224

ABSTRACT

A 60-year-old woman was admitted to our hospital due to coronavirus disease 2019 (COVID-19) pneumonia with a chief complaint of persistent low-grade fever and dry cough for two weeks. Thoracic computed tomography demonstrated a crazy paving pattern in the bilateral lower lobes. In a COVID-19 ward, we used a novel wireless stethoscope with a telemedicine system and successfully recorded and shared the lung sounds in real-time between the red and green zones. The fine crackles at the posterior right lower lung fields changed from mid-to-late (day 1) to late inspiratory crackles (day 3), which disappeared at day 5 along with an improvement in both the clinical symptoms and thoracic CT findings.


Subject(s)
Auscultation/instrumentation , COVID-19/diagnosis , Respiratory Sounds/diagnosis , SARS-CoV-2 , Stethoscopes , Telemedicine/methods , COVID-19/epidemiology , Equipment Design , Female , Humans , Middle Aged , Tomography, X-Ray Computed/methods
20.
Sensors (Basel) ; 20(18)2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-760951

ABSTRACT

Lung sounds acquired by stethoscopes are extensively used in diagnosing and differentiating respiratory diseases. Although an extensive know-how has been built to interpret these sounds and identify diseases associated with certain patterns, its effective use is limited to individual experience of practitioners. This user-dependency manifests itself as a factor impeding the digital transformation of this valuable diagnostic tool, which can improve patient outcomes by continuous long-term respiratory monitoring under real-life conditions. Particularly patients suffering from respiratory diseases with progressive nature, such as chronic obstructive pulmonary diseases, are expected to benefit from long-term monitoring. Recently, the COVID-19 pandemic has also shown the lack of respiratory monitoring systems which are ready to deploy in operational conditions while requiring minimal patient education. To address particularly the latter subject, in this article, we present a sound acquisition module which can be integrated into a dedicated garment; thus, minimizing the role of the patient for positioning the stethoscope and applying the appropriate pressure. We have implemented a diaphragm-less acousto-electric transducer by stacking a silicone rubber and a piezoelectric film to capture thoracic sounds with minimum attenuation. Furthermore, we benchmarked our device with an electronic stethoscope widely used in clinical practice to quantify its performance.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/instrumentation , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Monitoring, Ambulatory/instrumentation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Respiratory Sounds/diagnosis , Respiratory Sounds/physiopathology , Stethoscopes , Wearable Electronic Devices , Acoustics , Auscultation/instrumentation , COVID-19 , COVID-19 Testing , Electric Impedance , Equipment Design , Humans , Pandemics , Remote Sensing Technology/instrumentation , SARS-CoV-2 , Signal Processing, Computer-Assisted , Transducers , Wireless Technology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL